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Abstract Continental shallow cumulus (ShCu) clouds observed on 30 August 2016 during the Holistic
Interactions of Shallow Clouds, Aerosols, and Land‐Ecosystems (HI‐SCALE) field campaign are
simulated by using an observation‐constrained cloud‐system resolving model. On this day, ShCu forms over
Oklahoma and southern Kansas and some of these clouds transition to deeper, precipitating convection
during the afternoon.We apply a four‐dimensional ensemble‐variational (4DEnVar) hybrid technique in the
Community Gridpoint Statistical Interpolation (GSI) system to assimilate operational data sets and unique
boundary layer measurements including a Raman lidar, radar wind profilers, radiosondes, and surface
stations collected by the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) atmospheric observatory into the Weather Research and Forecasting (WRF)
model to ascertain how improved environmental conditions can influence forecasts of ShCu populations
and the transition to deeper convection. Independent observations from aircraft, satellite, as well as ARM's
remote sensors are used to evaluate model performance in different aspects. Several model experiments are
conducted to identify the impact of data assimilation (DA) on the prediction of clouds evolution. The
analyses indicate that ShCu populations are more accurately reproduced after DA in terms of cloud
initiation time and cloud base height, which can be attributed to an improved representation of the ambient
meteorological conditions and the convective boundary layer. Extending the assimilation to 18 UTC (local
noon) also improved the simulation of shallow‐to‐deep transitions of convective clouds.

Plain Language Summary Accurate prediction of life cycle of shallow convective clouds is very
challenging for the existing weather and climate models since they have difficulties in reproducing realistic
atmospheric structure within a shallow layer near the Earth surface (also called boundary layer,
roughly below 2‐km height in daytime). To tackle this fundamental problem, the observational data
collected for operational weather prediction as well as unique boundary layer observations measured near
north‐central Oklahoma are integrated to constrain the behavior of cloud‐system resolving model across
different scales with an emphasis on boundary layer. The results show that the model biases in atmospheric
conditions, especially humidity within boundary layer, are reduced with the modification informed by
observations. As a consequence, shallow convective clouds are well reproduced in terms of cloud evolution
in time and space which are verified by various cloud measurements. It also suggests that surface
observation can be used to correct cold pool intensity which is closely related to the maintenance of deep
convective clouds that are transitioned from shallow convective clouds.

1. Introduction

While individual shallow cumulus (ShCu) clouds are small, populations of ShCu that form over continents
and trade wind regions over oceans alter atmospheric stability by redistributing heat and moisture and sig-
nificantly affect the Earth's radiative budget (Berg et al., 2011; Neggers et al., 2007). ShCu forms when ther-
mals gain enough buoyancy from within the boundary layer and overshoot the lifting condensation level
(LCL). The diameter of ShCu is generally less than 1 km and has a depth usually smaller than 2 km (Berg
& Kassianov, 2008). It is also called “fair‐weather” cumulus since it rarely precipitates or produces very
light rainfall. The life cycle of ShCu is very sensitive to local turbulence and updrafts within boundary
layer convective eddies (Lareau et al., 2018). Under certain environmental conditions, ShCu can transition
into deeper, precipitating convection and ultimately more organized deep convective systems
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(Khairoutdinov & Randall, 2006; Kuang & Bretherton, 2006; Wu et al., 2009; Zhang & Klein, 2010, 2012).
Thus, improving prediction of shallow convective cloud populations would benefit not only solar radia-
tion estimates for climate modeling and solar energy forecasts (Jimenez et al., 2016), but also estimates
of precipitation amount and frequency that are crucial for climate, weather forecasting, and water
resources management.

To better understand and characterize the processes influencing the life cycle of continental ShCu and other
atmospheric phenomena, extensive long‐term measurements have been obtained at the U.S. Department of
Energy's (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) atmospheric
observatory. The SGP site, located in north‐central Oklahoma, is well suited to study ShCu (Berg et al., 2013;
Berg & Kassianov, 2008; Wagner et al., 2013; Zhang & Klein, 2010, 2012) because of the high climatological
occurrence of locally forced ShCu in the region. Several field campaigns have also been conducted around
the SGP site to investigate processes affecting the life cycle of shallow clouds, including the Holistic
Interactions of ShallowClouds, Aerosols, andLand‐Ecosystems (HI‐SCALE)field campaign (Fast et al., 2018)
conducted during the spring and summer of 2016. The spring and summer Intensive Observation Periods
(IOPs) occurred between 24 April to 21 May and 28 August to 23 September, respectively. Processes connect-
ing the soil, surface layer, boundary layer, and free troposphere can be investigated by integrating the
HI‐SCALE measurements made by the Gulfstream I (G‐1) aircraft (Schmid et al., 2013), the ARM ground
instrumentation (e.g., scanning and vertically pointing radars, radiosondes, Doppler lidars (DLs), wind pro-
filers, radiometers, surface meteorology, eddy correlation systems, soil temperature, and moisture)
(Sisterson et al., 2016), and the Oklahoma Mesonet (e.g., surface meteorology, soil temperature, and moist-
ure) (McPherson et al., 2007). These comprehensive data sets provide a wealth of information for detailed
observational analysis, but also provide a valuable source of data to verify and improve high spatial resolu-
tion numerical simulations.

Uncertainties in the initial or boundary environmental conditions are a prominent source of error in numer-
ical cloud forecasts. The research community frequently uses global reanalysis products produced by multi-
ple agencies and countries to provide the initial conditions for global climate models and the initial and
boundary conditions of regional cloud‐system resolving models. These reanalyses are usually obtained from
a global model constrained by conventional observations using data assimilation (DA) techniques. However,
cloud‐scale features are poorly resolved in these analyses because of the coarse grid spacing (both horizontal
and vertical) in the host global model. The reanalyses may also contain larger uncertainties in regions with
few valid observations to constrain themodel. Numerous studies over the past two decades have also demon-
strated the benefits of DA techniques that integrate the available observations with a cloud‐system resolving
models (Anderson et al., 2009; Barker et al., 2012; Benjamin et al., 2016; Hu et al., 2017; Meng & Zhang, 2008;
Schwartz et al., 2015). Many studies have examined how DA influences the timing, location, spatial extent,
and severity of deep convective systems (Chang et al., 2015; Johnson et al., 2015; Sun & Wang, 2012; Tai
et al., 2011, 2017) since those events are hazardous and have immediate societal impacts.

In contrast, there have been far fewer studies focusing on the impact of DA on simulating more typical and
benign weather conditions, including the life cycle of shallow convective clouds and their transition to dee-
per, precipitating convection. Since the formation and growth of shallow convective clouds are highly
related to processes taking place within or near the convective boundary layer (CBL) (Lareau et al., 2018;
LeMone et al., 2013), a realistic representation of CBL structures in the model is needed. Nevertheless, it
has been found that significant model biases occur within the boundary layer. For instance, Morcrette
et al. (2018) demonstrate extensive and significant temperature biases over the central United States in mul-
tiple weather and climate model forecasts. To tackle this well‐known issue, numerous studies have used var-
ious DA techniques to assimilate meteorological observations at the surface and within the boundary layer
(Adam et al., 2016; Alapaty et al., 2001; Ruggiero et al., 1996; Stauffer et al., 1990; Wulfmeyer et al., 2006).
However, most of them do not assess the impact of assimilating these data on subsequent cloud prediction.
Li et al. (2015) applied the Community Gridpoint Statistical Interpolation (GSI) system to assimilate the
National Centers for Environmental Prediction (NCEP) operational data stream along with some of the
ARM measurements by using a three‐dimensional variational (3DVar) technique. Their multiscale DA
(MSDA) technique essentially assimilates data with flexible scaling factors that can be tuned with
respect to model resolved scales. The analysis generated by MSDA has been adopted by the DOE's
Large‐Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project that conducts
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semi‐operational high‐resolution simulations of ShCu (Gustafson et al., 2020). Nevertheless, the MSDA's
native prediction of ShCu populations has not been examined because it has only been used to provide
the large‐scale forcing of LES.

In contrast to these earlier studies, the goal of this research is to determine whether the predictability of
ShCu cloud populations in a cloud‐system resolving model can be improved when constrained by observa-
tions of environmental states collected in and around the ARM SGP site during a particular event in the
HI‐SCALE campaign. We apply a hybrid ensemble variational scheme to assimilate conventional as well
as campaign observations to examine the impacts they have upon the simulated life cycle of shallow convec-
tive cloud populations including the transition to deeper convection. Overall, the results demonstrate a posi-
tive impact of DA on constraining multiscale meteorological conditions of the ambient environment,
especially within the boundary layer, in the cloud‐system resolving model, leading to more accurate predic-
tion of shallow convective clouds evolution. An extended assimilation at 18 UTC shows positive impact on
the simulation of shallow‐to‐deep transitions of convective clouds. The research tools employed, including
the forecast model, DA techniques, and the observational data sets, are introduced in section 2. The experi-
mental design and demonstration of a case study day containing a complete life cycle of ShCu clouds are
described in section 3. In section 4, the simulated clouds are examined qualitatively and verified quantita-
tively across multiple spatial scales by comparison against satellite retrievals as well as ground‐based remote
sensors. Corresponding meteorological conditions are also evaluated by independent field campaign data to
clarify what specific optimizations are done by DA. In section 5, we discuss some challenges and path toward
improved modeling of shallow convective cloud populations, including challenges in representing transi-
tions of shallow‐to‐deep convection, the necessity of hydrometeor assimilation, the frequency updates in
operational forecast products, and the potential of mesoscale DA in LES modeling. Finally, a summary is
included in section 6.

2. Research Tools and Data Sets
2.1. Forecast Model and DA Technique

TheWeather Research and Forecasting (WRF) model version 3.9.1 (ARW, Skamarock et al., 2008) is used to
conduct all the mesoscale cloud simulations in this study. Figure 1 depicts four one‐way nested domains.
The first domain, denoted as d01, has a grid spacing of 36 km and encompasses the continental United
States, Canada, and adjacent oceans. Each inner domain's horizontal grid spacing decreases from its parent
domain by a factor of 3 so that the grid spacings on the second, third, and fourth domains are 12, 4, and

Figure 1. Geographic maps with four WRF model nesting domains (d01–d04) depicted. Color shading represents terrain
height. Domain 4 is zoomed in to marks available observations including Central Facility, radar wind profiler sites
(shown in red texts), Doppler lidars (blue), ARM surface sites (magenta), and Oklahoma Mesonet (empty triangles).
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1.33 km, respectively. The fourth domain (d04) encompasses most of the ARM SGP measurement sites as
shown in the right panel of Figure 1. A stretched grid is used in the vertical direction with 74 levels. To better
resolve the boundary layer and shallow clouds, smaller vertical grid spacings are used in the lower tropo-
sphere. For instance, the vertical grid spacing stretches from approximately 30 m near the surface to 60 m
near 2‐km height and then gradually increased to 300 m at altitude of 6 km. The simulations adopt the
Morrison microphysics parameterization (Morrison et al., 2005), Mellor‐Yamada‐Janjic (MYJ) boundary
layer parameterization (Janjić, 1994), MYJ surface layer parameterization (Janjić, 2001), Unified Noah
land‐surface parameterization (Chen & Dudhia, 2001), and the Rapid Radiative Transfer Model for
General Circulation Models (RRTMG) longwave and shortwave radiation parameterization (Iacono
et al., 2008). The cumulus potential (CuP) shallow convection coupled with Kain‐Fritsch deep convection
parameterization (Berg et al., 2013) is used only for the first and second domains.

All simulations are initialized with the NCEP FNL Operational Model Global Tropospheric Analysis (http://
dss.ucar.edu/datasets/ds083.2/), which has atmospheric and soil variables on a 1 × 1° grid. Analyses at 6‐h
intervals provide the lateral boundary conditions for the first WRF domain (d01). The land use data are
obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS)‐based data set available at a
1‐km grid spacing with the International Geosphere‐Biosphere Programme (IGBP) land cover type classifi-
cation. These and other static water, land, and soil parameters are interpolated to the model domains using
the WRF Preprocessing System (WPS).

The version 3.6 Community GSI system, utilized in this study, is capable of assimilating a wide range of
observational data including conventional (e.g., radiosonde, wind profiler, land surface, buoy, radar
velocity‐azimuth display [VAD] algorithm wind profile, aircraft) and satellite radiance and retrieved proper-
ties (Shao et al., 2015). The system provides several widely used assimilation technique options, including
3DVar, three‐dimensional and four‐dimensional ensemble‐variational hybrid (3DEnVar, 4DEnVar;
Hamill et al., 2011; Wang et al., 2013; Wang & Lei, 2014), as well as the ensemble Kalman filter (EnKF;
Zhu et al., 2013).

The 3DVar method uses static background errors generated climatologically from more than one month
forecast data set by using NMC method (forecast minus analysis). Since these background errors are pre‐
calculated, 3DVar has the least computational cost among all DA techniques. However, from what was
revealed in earlier studies (Bannister, 2017; Wang & Lei, 2014) and by our own preliminary test experiments,
the ensemble‐variational DA techniques (3DEnVar and 4DEnVar) overall outperform 3DVar in many occa-
sions. Wang and Lei (2014) noted that the 3DEnVar technique does not account for the temporal evolution
of the error covariance within the assimilation window, and only the ensemble perturbation at a single time
period (the center of the assimilation window in this study) is used in calculation of the cost function during
variational minimization, whereas the 4DEnVar technique can use information extracted from multiple
ensemble perturbations at time periods within the assimilation window to generate time‐evolving back-
ground error structures. EnVar methods are found to be more robust than EnKF when ensemble size is rela-
tively small or when model errors are large as the variational method employs dynamic constraint during
minimization. Based on these superior traits, we use the 4DEnVar hybrid technique in the current study.
In comparison to 4DEnVar, 4DEnVar hybrid technique particularly blends ensemble‐based background
error with static background error to alleviate possible underestimation of errors represented by limited
number of ensemble members. More details about the implementation and formulation of 4DEnVar can
be found in Wang and Lei (2014).

To enable ensemble‐variational hybrid DA, a group of ensemble members is essential as they comprise the
“flow‐dependent” background errors which accounts for 85% of the total background errors used in our
study. The static background error is computed using forecasts from the NCEP's North American
Mesoscale Forecast System (NAM) model covering North America and responsible for another 15% of
total background error. The ensemble member forecasts run with the identical domain configuration
(numbers, sizes, and resolutions) as that of the DA experiments have. Instead of perturbing the model on
our own, the NCEP Global Ensemble Forecast System (GEFS) 21‐member ensemble with 1° horizontal grid
spacing (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-sys-
tem-gefs) is used to provide a set of candidates of initial and boundary conditions for high‐resolution ensem-
ble forecasts. To obtain reasonable ensemble spread, a size of 54 members is designed as each member is
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initialized at 00 UTC on 29 August by one randomly selected GEFS mem-
ber out of 21. Then, each simulation is integrated by 2 days and output
every hour with an unrepeated combination of planetary boundary layer
(PBL), cumulus, microphysics, and land surface parameterizations.
Aside from those parameterization adopted in the default model config-
uration mentioned in section 2.1, Table 1 denotes two additional PBL
parameterizations including the Yonsei University (YSU, Hong et al.,
2006) and Mellor‐Yamada‐Nakanishi‐Niino (MYNN, Hong et al., 2006;
Nakanishi & Niino, 2009), two additional cumulus parameterizations
including the Grell 3D ensemble (Grell & Dévényi, 2002) and Tiedtke
(Tiedtke, 1989), two additional microphysics parameterizations including

the Thompson (Thompson et al., 2008) and WRF single‐moment 6‐class (Hong & Lim, 2006), and one addi-
tional land surface parameterization (Noah‐MP; Niu et al., 2011) used for the ensembles.

2.2. Observational Data Sets

Various observational data sets are used for DA and forecast evaluation. To ensure that the regional model is
constrained by realistic large‐scale atmospheric conditions, the NCEP ADP Global Upper Air and Surface
Weather Observations data set (https://rda.ucar.edu/datasets/ds337.0/) and Global Data Assimilation
System (GDAS) satellite data (https://rda.ucar.edu/datasets/ds735.0/) are assimilated. They consist of global
upper air and surface weather observations as well as satellite data that are operationally used by the NCEP
operational GDAS. The upper air and surface weather observations measured by multiple instruments
(radiosonde, aircraft, ship, buoy, wind profiler, surface station, etc.) provide atmospheric states of pressure,
temperature, wind, and humidity over the whole globe. However, the observations are distributed unevenly
in space and concentrate in or near the continents except for ship and aircraft measurements. In contrast, the
advantage of satellite data, such as brightness temperature and radiance, is its spatial coverage that provides
information to fill in data voids at particular periods of time. Since the majority of these observations are
located above the boundary layer, the synoptic environment is best improved by the NCEP GDAS data sets.

In addition to operational data sets, the surface and boundary layer atmospheric states measured by instru-
ments deployed at the ARM SGP site and over Oklahoma are also incorporated to further constrain the
atmospheric conditions in the model. The ARM program collects a wide range of measurements to support
research that improves the basic understanding of the representation of clouds and radiative forcing in glo-
bal climate models (Sisterson et al., 2016). There are currently 19 measurement sites over north‐central
Oklahoma, including the Central Facility that has the most extensive suite of instruments. The exact loca-
tions of the sites are depicted over the fourth model domain in Figure 1. ARMmeasurements used for assim-
ilation in this study are radiosondes, radar wind profilers (RWPs), a Raman lidar (RL), and surface sites. The
radiosondes are launched at the Central Facility every 6 h, providing vertical profiles of wind speed, wind
direction, pressure, humidity, and temperature from the surface to the tropopause. Three RWPs deployed
around the Central Facility measure the variability of lower tropospheric wind profiles around the SGP site
every 10 min. The RL located at the Central Facility uses a number of narrow‐band detection channels spe-
cifically tuned to sense the Raman backscatter from atmospheric N2, O2, and H2O molecules. Moisture and
temperature profiles are retrieved by combining raw signals from these channels (Newsom, 2009). The mea-
sured profiles from radiosonde and RWPs are mostly available for DA during the 1‐day assimilation period
with relatively few instances of missing data. Unfortunately, the RL had a certain fraction of data eliminated
by quality control on 29 and 30 August. The data filtering for RL observations is done as follows. First, biases
of retrieved temperature and specific humidity are calculated on a level‐by‐level basis based on linear inter-
polation of radiosonde data in time. Then, the normalized bias ratios are acquired by taking the biases
divided by the lidar observed value. With the bias ratio given for each data point, data filtering can be carried
out by eliminating data when its bias ratio exceeds a certain threshold (0.05 in the current study). We found
the data quality issue to be more serious for temperature than specific humidity; therefore, retrieved tem-
perature is excluded from the assimilation data set.

The locations of ARM's surface sites are marked by magenta crosses in Figure 1. In addition, the measure-
ments of Oklahoma Mesonet (McPherson et al., 2007), displayed as empty triangles in Figure 1 and provid-
ing statewide coverage of meteorological conditions (horizontal wind components, pressure, temperature,

Table 1
List of Parameterization Schemes Included in Generating Multiphysics
Ensemble That are Used in Estimation of Flow‐Dependent Background
Error Covariance for Four‐Dimensional Ensemble‐Variational
Hybrid Assimilation

Type of
parameterization
scheme PBL

Cumulus
(only for
d01, d02) Microphysics Land surface

Choice no.1 MYJ KF_CuP Morrison Noah
Choice no.2 YSU Grell Thompson NoahMP
Choice no.3 MYNN Tidtke WSM6 None
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relative humidity), are also assimilated to assist constraint of surface conditions in a wider region. We note
that most of the ARMmeasurements are not assimilated by operational weather forecast systems since they
are not available in real time. Therefore, our results also demonstrate the potential value of including addi-
tional regional‐scale observations on model predictions.

In GSI, the observation errors for types of measurements are height dependent and read in from a table.
Except for RL, the observation errors of other assimilated observations are adopted from an error table that
is defined and used for the NAM. In order to construct moisture observation error of RL, we compute the
mean deviation of mixing ratio (g kg−1) between Central Facility radiosonde and filtered RL from surface
to 3‐km mean sea level (MSL) over the whole period of second IOP (not shown). It indicates that the devia-
tion is about 0.4 g kg−1 with slight variation in height. Since the deviation is relatively small in comparison
with the actual mixing ratio value (~10 to ~20 g kg−1), we apply the moisture observation errors of radio-
sonde to the case of RL.

3. Case Description and Experimental Design
3.1. Meteorological Conditions on 30 August 2016

Several cases with shallow‐to‐deep cloud transitions were observed during HI‐SCALE (Fast et al., 2018).
Most of these cases occurred during the summer IOP because fair‐weather conditions and stronger surface
heating are more common in summer than in spring. Among those events, 30 August of 2016 is selected for
this study because of the widespread formation of ShCu, which was strongly influenced by land‐atmosphere
coupling as described by Fast et al. (2019). During the morning, as shown in Figure 2a, a band of high clouds
extended along a trough from eastern New Mexico toward the northeast into western Kansas in association
with a slow‐moving frontal system over the central United States. This cloud band lingered over western
Oklahoma for the entire day. Clear‐sky conditions were observed over central and eastern Oklahoma during
the morning until ShCu formed around 16 UTC (10 Central Standard Time [CST]) (Figure 2b) as the CBL
became deeper than the LCL. Widespread cumulus formed over southeastern Kansas, central and eastern
Oklahoma, and northeastern Texas by 1815 UTC (Figure 2c). After 19 UTC (Figures 2d–2f), ShCu at some
locations transitioned into deeper convective clouds. We note that the GOES‐13 reflectance shown in
Figure 2 has a resolution of ~1 km. Consequently, individual ShCu may not be fully represented.

3.2. DA Strategy and Experimental Design

A cycling assimilation strategy is applied to all DA experiments in this study that consists of alternating per-
iods of DA and no DA that brings the three‐dimensional atmospheric conditions closer to observations over
time. Earlier studies have suggested that the use of a cycling assimilation strategy could aid in generating
optimal analyses due to constraints by consecutive data sets while better maintaining model balance
(Xiao & Sun, 2007). The current assimilation schedule, depicted in Figure 3, for our default DA experiment
(named “4DEnVar” hereafter) begins with a 12‐h spin‐up period initialized by NCEP FNL reanalysis to gen-
erate finer‐scale meteorological conditions. Following that, a 24‐h cycling assimilation period is then per-
formed in which five individual assimilations are conducted every 6 h with the identical DA configuration
to assimilate observations collected in each time interval. In each assimilation, a 3‐h 4DEnVar window is
designed to assimilate valid observations at three bins which correspond to three hourly updated back-
grounds. The model fields including zonal and meridional winds, specific humidity, temperature, and pres-
sure are updated based on analyzed increments and then used as the input file for the reinitialization of
subsequent forecast. The NCEP GDAS observations are assimilated in all four domains, while the additional
Oklahoma Mesonet and ARM SGP observations are only assimilated in domains 3 and 4. Once the whole
procedure is completed, the last analysis of DA at 12 UTC of 30 August is used to initialize regional cloud
simulations over all domains for a 12‐h forecast period. Note that the localization parameters such as hori-
zontal and vertical localization distances that are used in generating both static and ensemble‐estimated
background error covariances are adjusted accordingly with domain resolutions as they are employed in
GSI to define the appropriate influential range of analysis increment. For instance, the horizontal localiza-
tion distances for ensemble‐estimated background error covariance are set as 110, 50, 30, and 10 km for
domain 1, 2, 3, and 4, respectively. The vertical localization distance is kept at 3‐sigma levels for all four
domains.
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Three additional experiments are designed to better understand the influences of DA in different aspects.
First, a pure WRF forecast experiment initialized at 00 UTC of 30 August by using NCEP FNL reanalysis
(named “FNL_BC”) is performed as it reflects what will be obtained if there is no assimilation involved.
Second, we conduct a WRF forecast initialized at 12 UTC by employing 3‐km resolution analyses of
National Oceanic and Atmospheric Administration (NOAA)'s High‐Resolution Rapid Refresh (HRRR) pro-
duct (Benjamin et al., 2016) since it is the highest‐resolution reanalysis available to initialize WRF (named

Figure 2. Snapshots of observed GOES‐13 visible band reflectance at (a) 1400, (b) 1600, (c) 1815, (d) 2000, (e) 2200, and
(f) 2337 UTC on 30 August 2016 over the Southern Great Plains. The rectangle indicates where domain 4 is located.
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“HRRR_BC” experiment). Note that in HRRR_BC, domain 1 is not used since HRRR analysis domain does
not cover all of domain 1. The third experiment is designed to examine the data impact coming from
non‐ARM sources other than operational data stream (e.g., satellite observations). Therefore, a sensitivity
DA experiment named “4DEnVar_GDAS” is carried out in which only observations from NCEP GDAS
data bundles are assimilated. Brief descriptions for each aforementioned experiment are summarized in
Table 2.

4. Results
4.1. Simulated Clouds Over Oklahoma and Adjacent Regions

Since the current DA experiments do not update hydrometeors, the variation of predicted clouds in all the
experiments can be solely attributed to changes of meteorological conditions between those experiments.
Since the DA period ends at 12 UTC, the following discussion will be focused on how the clouds evolve dur-
ing daytime of 30 August, from 12 UTC to 00 UTC 31 August, from different experiments. Domain 3 covers
all of Oklahoma and southern Kansas with a grid spacing of 4 km. The cumulus parameterization is turned
off in domains 3 and 4, since it is not necessarily valid at those spatial scales. While shallow convective clouds
are predicted by the model by the microphysics parameterization, we note that the grid spacings of 4 and
1.33 km only resolve ShCu cloud populations.

Here, we use metrics of total (liquid and ice) cloud water path (CWP) and
liquid water path (LWP) to directly compare with gridded (Δx ¼ 5 km)
retrieved products of the GOES‐13 satellite measurements (Minnis
et al., 2008, 2011). The Visible Infrared Solar‐Infrared Split Window
(VISST) algorithm used for retrieval is not only able to estimate the
amount of cloud water within each vertical grid column, but also to iden-
tify the cloud top height and phase of each grid. The simulated CWP and
LWP of each experiment are obtained for each column within domain 3
via equations

CWP ¼ ∫
ps
pt

ql þ qs þ qið Þg−1dp; (1)

LWP ¼ ∫
ps
pt
qlg

−1dp: (2)

where ql, qs, and qi represent liquid, snow, and ice cloud mixing ratios
(kg kg−1), respectively. G is gravitational acceleration (m s−2), and dp is
the pressure increment (Pa) between two layers in the atmosphere, with
ps and pt representing the surface and model top pressures, respectively.

Table 2
List of All Experiments Including Simulations With and Without Coupling
With Data Assimilation System

Experiment
I.C. & B.C.
(resolution)

Assimilated data set

NCEP
GDAS

ARM and Oklahoma
Mesonet

FNL_BC NCEP FNL (1°) N N
HRRR_BC HRRR (3 km) N N
4DEnVar_GDAS NCEP FNL (1°) Y N
4DEnVar NCEP FNL (1°) Y Y

Note. The assimilated data sets in each experiment are also indicated.
Note that the NCEP GDAS data set includes both conventional (radio-
sonde, aircraft, ship, buoy, wind profiler, etc.) and satellite data
(daily AMSU‐A brightness temperature, HIRS‐4 radiance, Microwave
Humidity Sounder [MHS] brightness temperature), while the ARM data
set includes observations from radiosonde, radar wind profiler, Raman
lidar, and Mesonet.

Figure 3. Schematic diagram to illustrate workflows including assimilation strategy for all the experiments. The
4DEnVar and 4DEnVar_GDAS experiments share the same 4DEnVar hybrid assimilation strategy but differ in
assimilated observations. The three arrows represent 3 h in each assimilation window. FNL_BC and HRRR_BC are two
pure forecast experiments which are initialized by different reanalyses at 00 UTC and 12 UTC of 30 August, respectively.
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Figure 4 displays plots of the GOES‐13 observedCWP alongwith simulated CWP from experiments FNL_BC,
HRRR_BC, and 4DEnVar at three selected times (16, 20, and 00 UTC). Note that 4DEnVar_GDAS results are
not included in Figure 4 since they are similar to those from4DEnVar. The observedCWP shows the presence
of a cloudy region over the western domain at 16 UTC, which is part of the band of clouds extending from
western Texas into Nebraska as shown in Figure 2. At 20 UTC, the total cloud fraction (CF) increases, and
some of the clouds over the western and southeastern sides of the domain transition into more convective
cloud populations as the amounts of cloud water significantly increase. At 00 UTC, most of the clouds in
the domain have become even deeper and propagate toward the central Oklahoma from both the west and
east sides of the domain.

CWPs from experiments FNL_BC, HRRR_BC, and 4DEnVar exhibit diverse cloud development within
domain 3, indicating that the uncertainty of large‐scale and mesoscale ambient environmental conditions
is fairly large and significantly impacts the formation and location of cloud populations. Without additional
DA, FNL_BC has difficulty in reproducing clouds over the western domain at 16 UTC, which implies that
aspects of the large‐scale trough system are poorly predicted. In contrast, the HRRR_BC better represents
the presence of clouds in this region due to the fact that hydrometeors are also updated in HRRR analysis
in addition to other conventional DA. 4DEnVar is able to recover some of the clouds over western domain
through cycled assimilation but is relatively weaker than HRRR_BC since the hydrometeors are not updated
in current DA configuration. After 4 h of integration at 20 UTC, FNL_BC has more clouds simulated, but it
misses the deeper clouds observed over southeastern Oklahoma. HRRR_BC predicts more cloudiness com-
parable to observations but produces an area of spurious convection over south central Oklahoma. 4DenVar
overall exhibits better qualitative agreement with the observed cloud distributions with the deepest convec-
tion over western and southeastern sides of the domain. Compared with observed CWP, all experiments in
general simulate shallower convections in the late afternoon as shown in snapshots at 00 UTC.

To quantitatively evaluate the CFs simulated in the experiment, we compute the total CF and liquid CFs
(LCFs) based on the fractions of columns within domain 3 in which CWP and LWP are greater than
1 g m−2. Similarly, the observed CF and LCF are obtained by calculating the fraction of pixels with

Figure 4. Snapshots at 16 and 20 UTC of 30 August and 00 UTC of 31 August 2016 that display cloud water path from GOES‐13 retrievals and simulated results of
experiments FNL_BC, HRRR_BC, and 4DEnVar. 4DEnVar_18UTC represents forecast result with reinitialization at 18 UTC. Note that all the values are
shown by shading in unit of kg m−2.
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GOES‐13 satellite radiance retrieved CWP and LWP greater than 1 g m−2

within the same domain. Since there are mixed‐phase pixels identified,
the LCF accounts for pixels identified as in the liquid phase as well as
additional mixed‐phase (liquid–ice, liquid–clear‐sky) pixels in the calcula-
tion. Note that the grids with retrieved cloud top heights higher than
4.5‐km MSL (approximated melting level) have been excluded in the cal-
culations of observed LCF to further filter out the non‐liquid phase cloud
pixels. In addition, simulated CWP and LWP are interpolated onto the
GOES‐13 retrieval grids to avoid possible issue induced by different total
grid numbers in CF and LCF calculations.

Figure 5a depicts the evolution of observed and simulated CFs over the
whole domain 3 during daytime of 30 August from 12 to 00 UTC.
Satellite measurements indicate a rapid increase in CF from ~0.49 to
~0.75 between 16 to 19 UTC and then CF remained relatively steady the
rest of the afternoon. Among the simulated CFs, 4DEnVar (blue line)
and 4DEnVar_GDAS (orange line) are in better agreement with the
observed curve, although the increase in cloud coverage is slower than
observed. FNL_BC and HRRR_BC both capture the signal of rapid
increase in cloud coverage from 16 to 18 UTC, but CFs are much lower
than observed. FNL_BC is 0.2 to 0.3 lower than the observations, which
is consistent with Figure 4.

To assess the model predictions of shallow convective cloud populations,
liquid cloud water fraction over the domain as a function of time is shown
in Figure 5b. A similar but more prominent signal of rapid cloud forma-
tion and growth occurs between 16 and 18 UTC, demonstrating that shal-
low convection is responsible for the rapid increase in both CF and LCF.
Even though LCFs among the experiments vary before 16 UTC, all the
simulations qualitatively reproduce the life cycle of liquid clouds, includ-
ing a peak around noon and subsequent decay in the afternoon.

We also evaluate precipitation that is produced as a fraction of the shallow convection transition to deeper
convection. The 12‐h accumulated precipitation (12 UTC of 30 August to 00 UTC of 31 August) over domain
3 from all the experiments are shown in Figure 6. The NCEP Stage IV multisensor (radar and gauges) pre-
cipitation analysis (4‐km resolution) is introduced here as the observation (Lin & Mitchell, 2005).
Figure 6a shows patches of accumulated rainfall over 30 mm that were mainly observed over the western
part of domain 3, which is associated with convection along the synoptic‐scale trough. More scattered and
lighter precipitation is found over the eastern side of domain and can be attributed to isolated and transient
deep convection. In contrast, central Oklahoma is mostly precipitation free during the 12‐h period.
Compared with the Stage IV precipitation analysis, FNL_BC produces much less precipitation (Figure 6b)
in general. HRRR_BC produces patches of precipitation along the trough near the western boundary of
the domain more comparable to observed amount of precipitation, but it produces too much precipitation
over south central Oklahoma and not enough precipitation over northeastern Oklahoma (Figure 6c).
4DEnVar_GDAS produces light and scattered precipitation over much of the domain, having less agreement
with the observation (Figure 6d). While the CFs from 4DEnVar and 4DEnVar_GDAS are similar (Figure 5b),
the rainfall pattern from 4DEnVar is better when compared with the observed pattern (Figure 6e).

Simulated hourlymean rain rates over domain 3 during the 12‐h periodmentioned earlier are also compared
to NCEP Stage IV hourly data and given in Figure 7. The observed curve indicates a small rain rate peak near
14 to 15 UTC, which is only captured by HRRR_BC. After 18 UTC (local noon), the observed rain rate
increases in time during the rest of the afternoon, reflecting isolated areas of deep convection over domain
3. This trend, however, is not reproduced by any of the model experiments. Instead, all the experiments pro-
duce a rainfall peak around 19 to 20 UTC. The use of DA in 4DEnVar and 4DEnVar_GDAS produces a
higher rain rate than FNL_BC. The 4DEnVar_18UTC experiment shows a significant increase in rainfall
after 19 UTC, but the highest rain rates occur earlier than observed.

Figure 5. Comparison of domain 3 simulated (a) total cloud (including
both liquid and ice) fraction (CF) and (b) liquid cloud fraction (LCF)
against corresponding observations (GOES‐13 gridded retrievals) in time
series. The colored lines represent results calculated from observation and
different experiments as shown in the legends.
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4.2. Simulated Clouds Near the ARM SGP Site

Various data sets on ShCu and BL properties are utilized here to comprehensively evaluate simulated cloud
fields and the corresponding atmospheric conditions near the SGP Central Facility; therefore, we now focus
on a more localized area corresponding to the innermost domain (Δx¼ ~1.33 km). The impact of resolution
is shown in Figures 8a and 8b, where CWP simulated over domain 3 from 4DEnVar at 20 UTC is zoomed in
to the same area as domain 4. Even though the general cloud patterns are similar between the two domains,

the size of shallow convective clouds is smaller and their number tends to
be larger in higher‐resolution simulation than in lower‐resolution one as
expected. The gridded CWP retrievals from measurements of MODIS on
the NASA Earth Observing System Aqua satellite at 1950 UTC (1‐km grid
spacing, Figure 8c) and GOES‐13 at 1800 UTC (5‐km grid spacing,
Figure 8d) are introduced as the observations. A comparison of
Figures 8c and 8d indicates that GOES‐13, with a resolution of 5 km, cap-
tures the larger‐scale spatial distribution of cloud cover but smooths the
smaller and discrete shallow cloud clusters (as seen in the MODIS retrie-
val) by filling in the clear‐sky areas between individual clouds. As a result,
the GOES‐13 retrieval has a higher CF of ~0.6 than the number computed
fromMODIS retrieval (~0.4), implying that a larger bias could exist during
periods with more shallow subgrid clouds. Domain 4 of 4DEnVar
(Figure 8b) simulates a relatively wider area of the high clouds over the
northwestern side than the observed MODIS CWP (Figure 8c). In addi-
tion, the simulated clouds over the eastern part of domain are less aggre-
gated than those in the MODIS retrieval. We also notice that the

Figure 6. Twelve‐hour (from 12 UTC 30 August to 00 UTC 31 August) accumulated rainfall amounts (mm) over domain 3, including results of (a) Observation
(NCEP Stage IV), (b) FNL_BC, (c) HRRR_BC, (d) 4DEnVar_GDAS, (e) 4DEnVar, and (f) 4DEnVar_18UTC. The mean values (mm) for each data are listed
under each plot.

Figure 7. Comparison of simulated mean hourly rain rate (mm h−1)
against NCEP Stage IV observation over the whole domain 3 area from
12 UTC of 30 August to 00 UTC of 31 August. Colored lines denote results
calculated from observation and different experiments as shown in the
legends.
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operational forecast fromHRRR (version 2 in 2016), shown in Figure 8e, produces mostly clear skies over the
SGP site where shallow clouds are observed. This is consistent with an issue in version 2 of the HRRR system
noted by Benjamin et al. (2016), namely, an underprediction of resolved clouds, especially ShCu, which can
lead to an overestimation of the shortwave solar flux at the surface. More recent versions of HRRR now
represent subgrid‐scale clouds using the MYNN eddy diffusivity mass flux (EDMF) boundary layer
parameterization (Olson et al., 2019) that would likely better estimate fractional cloudiness for the
conditions observed on 30 August.

Figure 8. Snapshots of cloud water path (shading, kg m−2) at 20 UTC of 30 August, including results from (a) zoomed‐in
4DEnVar domain 3 simulation (Δx ¼ 4 km), (b) 4DEnVar domain 4 simulation (Δx ¼ 1.33 km), (c) MODIS Aqua
retrieval (1‐km resolution), (d) GOES‐13 retrieval (5‐km resolution), and (e) HRRR operational forecast (Δx ¼ 3 km). In
(a) and (b), the locations of Doppler lidars are depicted by black triangles. The black square represents the localized
area used in area‐mean calculations for simulations, and the purple lines in (a) and (b) represent the tracks of G‐1 flight
in morning and afternoon missions, respectively.
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In addition to the spatial distribution of clouds, it is important to evaluate the simulated cloud base height
(CBH) when compared with estimates obtained from the network of five DLs (shown in Figures 8a and 8b).
Simulated area‐mean cloud water mixing ratio (shown by color shading in Figure 9) is computed below an
altitude of 2.5 km within a 133 × 133 km area centered at Central Facility which is slightly larger than the
area of DL network. Moreover, simulated time series CBL heights (identified by maximum gradient of vir-
tual potential temperature profiles) and LCL averaged over the same area are overlaid with red solid and
blue dashed lines. The CBH estimated by DLs are marked by black dots with error bars showing the mean
and standard deviation at each hour. The observed CBH indicates that the initiation of shallow convective
clouds in the region occurs nearly at 15 UTC (09 CST) at an altitude of ~1.1 km. Then, CBH rises in time
and reaches the maximum altitude of ~1.7 km. The error bars also show that spatial variability in CBH
increases during the late afternoon. The initiation time of shallow convective clouds is delayed about 1
and 2 h in FNL_BC and HRRR_BC (Figures 9a and 9b), respectively, while the initiation time from both
4DenVar_GDAS and 4DEnVar are closer to the observed time (Figures 9c and 9d). In the meantime, the
simulated LCLs in both 4DEnVar_GDAS and 4DEnVar are relatively lower than FNL_BC and
HRRR_BC. To illustrate differences in the simulated cloud base and depth, the results from FNL_BC,
HRRR_BC, and 4DEnVar_GDAS are subtracted from 4DEnVar. Figures 9e–9g clearly show that the cloud
bases simulated by both FNL_BC and HRRR_BC are on average ~500 m higher than observed (Figures 9e
and 9f). While the cloud base from 4DEnVar_GDAS and 4DEnVar are very similar (Figure 9g), the average
cloud liquid water mixing ratio from 4DEnVar is lower during the morning and higher during the afternoon.
The horizontal cloud distributions (not shown) also indicate that 4DEnVar_GDAS has fewer clouds near the
SGP site after 19 UTC.

The cloud mask product provided by Active Remote Sensing of Clouds (ARSCL; Clothiaux et al., 2001) is
given in Figure 9h to illustrate the observed cloud base and depth at the Central Facility site. It combines
measurements from remote sensors in Central Facility to produce an objective determination of hydrome-
teor height distributions. It indicates that ShCu was first detected just before noon (18 UTC) at the
Central Facility site and suggests that the estimation of CBHs is quite robust as both observational data

Figure 9. Time‐height comparison of domain 4 simulated area‐mean (see the black square area depicted in Figure 8a)
liquid water mixing ratio (shading, kg kg−1) from (a) FNL_BC, (b) HRRR_BC, (c) 4DEnVar_GDAS, and (d) 4DEnVar
experiments below 3 km over a period from 14 UTC 30 August to 00 UTC 31 August. In each subplot, the corresponding
convective boundary layer height and lifting condensation level are overlaid with solid line in red and dashed line in
blue, respectively. The differences between 4DEnVar and other three experiments are given in (e) 4DEnVar and
FNL_BC, (f) 4DEnVar and HRRR_BC, and (g) 4DEnVar and 4DEnVar_GDAS. The ARSCL cloud mask is illustrated in
yellow shading in (f). The hourly mean and standard deviation of estimated cloud base heights from Doppler lidar
measurements are marked by black dots and error bars. The area‐mean hourly rain rate (mm h−1) of each simulation
(a–d) and corresponding Stage IV rain rate observation (h) are overlaid in purple bars.
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sets show similar results. The liquid cloud depth identified by ARSCL cloud mask varies from ~1.2 to over
1.5 km, suggesting that simulated shallow convective cloud depths are also comparable with observations.
Nevertheless, it should be noted that the ARSCL product is not necessarily representative over an area as
large as domain 4.

To examine the capability of model in reproducing the observed diurnal cycle of precipitation near the ARM
SGP site, the simulated area‐mean (same domain as the black square depicted in Figures 8a and 8b) hourly
rain rate of each model experiment is depicted in Figure 9. The areal mean of hourly rain rate from NCEP
Stage IV precipitation analysis is introduced as a reference in Figure 9h. While 4DEnVar_GDAS
(Figure 9c) simulates relatively higher rain rate than other experiments, overall, it indicates that all the
model experiments produce light and persistent precipitation during the presence of ShCu populations in
the afternoon (after 18 UTC). Although all simulated rain rates are higher than what is observed in the
Stage IV data, it should be noted that the comparison here is a qualitative evaluation as the 4‐km Stage IV
data set may have larger uncertainty in situations of lower rain rate.

4.3. Examination on Environmental Conditions Near the ARM SGP Site

In this section, the simulations are evaluated using observations obtained at or near the ARM SGP site to
provide insights into the changes of meteorological conditions that are made by DA and how those changes
then alter the evolution of shallow convective clouds.
4.3.1. Radiosonde
The evolution of the CBL strongly controls formation and growth of shallow convection; therefore, the
observed and simulated virtual potential temperature (θv) profiles below 2.5‐kmMSL are shown at 6‐h inter-
vals in Figure 10. Note that the simulated profiles from all experiments are obtained by averaging over nine
horizontal grid points from domain 4 closest to the Central Facility. The simulated CBL heights at 18 and 00
UTC are then identified as the level with largest gradient in the mean virtual potential temperature profile
for each experiment, while the observed CBL heights are estimated by the method provided in Liu and Liang
(2010). All the CBL heights are denoted by overlaid horizontal lines. During the early morning at 12 UTC
(06 CST), all of the model experiments are similar and they reasonably reproduce the observed radiative
cooling near the ground (Figure 10a). However, the simulated profiles at noon (18 UTC) in Figure 10b are
more diverse. Predictions of θv in the CBL differ by as much as 1.6 K. θv from 4DenVar is the closest to
the radiosonde within the CBL, although 4DEnVar produces a depth of 1.29 km that is about 100 m lower
than observed (1.38 km). The other three model experiments have larger positive biases within the CBL;
as a result, the mixed layer depths (1.45, 1.56, and 1.73 km for 4DEnVar_GDAS, HRRR_BC, and
FNL_BC, respectively) are greater than the observed depth of 1.3 km. The θv profiles at 00 UTC

Figure 10. Comparison of simulated virtual potential temperature (K) profiles below 2.5 km MSL with the radiosonde
observations at the ARM SGP Central Facility at (a) 12 UTC, (b) 18 UTC of 30 August, and (c) 00 UTC of 31 August.
Profiles of simulations are shown in lines with different colors indicated in the legend. In (b) and (c), the horizontal lines
denote the convective boundary layer heights estimated from corresponding virtual potential temperature profiles.

10.1029/2020MS002091Journal of Advances in Modeling Earth Systems

TAI ET AL. 14 of 25



(Figure 10c) are even more diverse due in part to differences in whether
the simulations produce local deeper, precipitating clouds near the
Central Facility site. Nevertheless, three of the experiments simulate
CBL depths around 1.8 km which are comparable with observed depth
of 1.88 km.
4.3.2. Raman Lidar
The RL deployed at ARM SGP Central Facility retrieves both temperature
and specific humidity profiles with high temporal resolution (10 min). As
mentioned earlier in section 2.2, the observed moisture profiles have been
quality controlled and are valid only after 16 UTC (10 CST) on 30 August.
Similar to the comparison with radiosondes, the simulated specific
humidity profiles below 3‐kmMSL are obtained with averaging over nine
grid points from domain 4 closest to the Central Facility. The observed
vertical variations in specific humidity from the RL along the simulated
variations are presented in Figure 11. The observed contour of 13 to
14 g kg−1 (yellow shading) moves upward in time from approximately 1
to 1.7 km due to CBL growth (Figure 11a), which matches quite well with
the evolution of DL estimated CBHs denoted by black dots. The CBL
heights estimated by Central Facility radiosonde profiles at 18 and 00
UTC are also given in Figure 11a. It shows good consistency at 18 UTC
and provides an additional guidance of CBL height at 00 UTC when esti-
mates from the DLs were invalid.

In Figures 11b–11e, the simulated moisture variation is overlaid by
area‐mean cloud mixing ratio as well as the CBL height for each model
experiment (same values shown in Figures 9a–9d). FNL_BC, HRRR_BC,
and 4DEnVar_GDAS show that contours of 14 to 15 g kg−1 are absent
after ~19 UTC (Figures 11b–11d), indicating that the boundary layer is
drier than RL observations. 4DEnVar has higher mixing ratios during
the afternoon up to 22 UTC and is more consistent with observations;
however, the simulation slightly overpredicts mixing ratios close to 16
UTC and after 22 UTC (Figure 11e). The dry bias is most pronounced in
HRRR_BC, which contributes to a more stable environment which results
in higher LCL (Figure 9b) and a cloud base that is too high (Figure 11c).
4DEnVar_GDAS (Figure 11d) exhibits an abrupt increase of moisture
above the boundary layer around 18 UTCwhich is associated with the for-
mation of deeper clouds, and then, entrainment of dry airs appears above
top of CBL (~1.5 km) after 20 UTC. Both of the variations did not occur in
observation. Our results agree with the major finding of Zhang and
Klein (2012), in which they investigated factors that control the evolution
of ShCu by analyzing 13‐year integrated observations measured at the
ARM SGP site and found that the relative humidity within boundary
(below 1.5‐km MSL) plays the biggest role in modulating ShCu among

many other environmental parameters. In summary, it suggests that moisture within CBL is quite sensitive
in modeling shallow convective clouds of cloud‐system resolving model and is thus essential to be accurately
represented.
4.3.3. G‐1
On 30 August, the ARM's research G‐1 aircraft collected meteorological, trace gas, and aerosol measure-
ments near the ARM SGP site. Two missions were completed just before (1435–1726 UTC) and after
(1832–1932 UTC) noon when the LCF reaches its maximum. Exact flight paths for the morning and after-
noon mission are depicted in Figures 8a and 8b, respectively. The meteorological observables measured
along the flight tracks provide a more regional context for the meteorological conditions at the Central
Facility. The model outputs from domain 4 at 1‐h interval are interpolated in time and space to match the
position of the G‐1 aircraft (Fast et al., 2011). Comparisons for the morning mission (Figure 12) show that

Figure 11. Time‐height comparison of specific humidity (shading, g kg−1)
at Central Facility below 3 km height over a period from 16 UTC of 30
August to 00 UTC of 31 August, including (a) observation of Raman lidar
and simulated results in experiments (b) FNL_BC, (c) HRRR_BC, (d)
4DEnVar_GDAS, and (e) 4DEnVar. In (a), the Doppler lidar estimated
cloud base heights and the Central Facility radiosonde estimated convective
boundary layer heights are overlaid by black dots (with error bars) and red
crosses, respectively. In (b–e), corresponding cloud mixing ratios and
convective boundary layer heights are illustrated by black dashed contours
(0.002 and 0.2 g kg−1) and red lines with star signs.
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all four model experiments qualitatively represent the spatial and temporal variations in temperature and
specific humidity. The mean absolute error (MAE) and bias are provided in the columns at the right side
of each subplot, showing the MAE range between 0.65 and 1.21 K for temperature and biases in a range
of −0.59 and −1.2 K, in which HRRR_BC has the lowest MAE and bias among experiments but does not
differ much when they are scaled by the real temperature. The range of MAE for specific humidity is
between 0.78 and 1.31 g kg−1, and 4DenVar has the smallest negative bias (−0.35 g kg−1). Simulated wind
speed and direction are more diverse among the experiments than the previous two variables. Relatively
larger errors in the wind direction are found in some of experiments when the dominant wind is weak at
altitudes near surface (~0.5‐km MSL). While both the simulated and observed wind directions are similar
along the lowest transects, the simulated winds near 1‐km MSL are often northeasterly while the
observed winds are easterly. The quantitative evaluation shows that the MAEs are quite comparable
among all experiments (1.0 to 1.3 m s−1 for wind speed; 64.4° to 76.2° for wind direction); however,
4DEnVar does have better skill in terms of biases of wind speed and direction.

Similar comparisons for the afternoon mission are given in Figure 13. The flight track of afternoon flight
mission consists of two primary transects at 1.5‐ and 2.0‐km MSL. While the overall performance in

Figure 12. Comparison of the observed (black line) and simulated (colored lines) temperature (K), specific humidity
(g kg−1), wind speed (m s−1), and wind direction (degree) along the G‐1 flight path during the morning of 30 August
2016. The legend at the top denotes the colors used to represent OBS, 4DEnVar, HRRR_BC, FNL_BC, and
4DEnVar_GDAS experiments. The mean absolute error (MAE) and bias for each variable and simulation are listed with
corresponding color on the right side of each subplot.
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temperatures is similar to the morning flight with MAE ranges from 0.81 to 1.05 K, simulated specific
humidity from all the experiments have relatively larger MAEs (between 1.77 and 2.19 g kg−1) and biases
(between −1.71 and −2.17 g kg−1) than what are shown previously for morning mission. These results are
consistent with the dry bias revealed by the RL profiles (Figure 11). The overall MAEs and biases of wind
speed also become slightly larger than the results for morning mission, but the predictions of wind
direction become better. It is very clear that the simulated winds from 4DEnVar are better than other
experiments at this time as it has the smallest numbers in both MAE and bias.

5. Discussion
5.1. Challenge in Modeling Cloud Transitions: Impact of Additional Assimilation at 18 UTC

The findings in section 4.1 indicate that the intensity of deep convective clouds, including some that are tran-
sitioned from shallow convections, is generally underpredicted in the late afternoon in all domain 3
(Δx ¼ 4 km) simulations. Many components could contribute to this issue, including the relatively coarse
resolution (for simulating convective clouds), assumptions in the physics parameterizations, and boundary
conditions. One source of error could relate to the time scales of predictability of shallow convective clouds
after the last DA cycle (i.e., the forecast lead time). To assess this sensitivity, we conduct an additional
4DEnVar simulation that includes an additional assimilation period at 18 UTC to determine whether further
constraining the ambient meteorology has a positive impact on the evolving convective cloud populations.

Figure 13. Same as Figure 12, except for the afternoon G‐1 flight.
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Compared to the forecast initialized at 12 UTC, the new simulation produces more vigorous convection with
higher CWP in the updated forecast at 20 and 00 UTC as shown in the column of 4DEnVar_18UTC in
Figure 4. As a result, the accumulated precipitation produced by 4DEnVar_18UTC is enhanced
(Figure 6f) and becomes more comparable with observations (Figure 6a) as the calculated mean of
accumulated precipitation increases from 1.77 to 2.88 mm although the amount remains less than
observed value (3.88 mm).

To identify possible mechanisms that strengthen convection during the afternoon after the assimilation per-
iod, we examine the analysis increments at 18 UTC at the lowest model level (Figure 14). Relatively large
positive zonal wind increments are produced under the eastward‐propagated cloud band over the western
part of domain (Figure 14a), which corresponds to significant negative temperature and positive specific
humidity increments in Figures 14c and 14d. Meanwhile, an area with distinct positive meridional wind
and specific humidity increments is produced over the southeastern Oklahoma where deep cloud popula-
tions are observed to occur (Figures 14b and 14d). Based on these analyses, the intensification of afternoon
convection can be attributed to increased moisture in the vicinity of the convective cells which then
enhances the atmospheric instability in subsequent forecast after assimilation. Also, the strengthened gust
fronts around the edges of cold pools trigger initiation of new convective clouds that sustains the intensity
of the overall convection in the region. To examine this issue, we then track the variation of intensities of
cold pools by reviewing simulated and observed surface temperature at 20, 22, and 00 UTC as shown in
Figure 15. The results indicate that 4DEnVar_18UTC does simulate stronger cold pools with lower surface
temperatures over the western and eastern sides of the domain at 20 and 22 UTC than 4DEnVar.
Nevertheless, simulated surface temperatures associated with cold pools are still lower than those observed
by the Oklahoma Mesonet.

5.2. Applicability of Current DA Configuration

We recognize that it is beneficial to include a composite analysis of multiple cases to determine whether the
current DA configuration robustly improves the simulated diurnal cycle of ShCu. Thus, we applied the

Figure 14. Domain 3 increments of (a) zonal wind (m s−1), (b) meridional wind (m s−1), (c) temperature (K), and
(d) specific humidity (g kg−1) at the first model level from the 4DEnVar experiment at 18 UTC on 30 August 2016.
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identical assimilation strategy of the 4DEnVar experiment to the days prior and after 30 August that also had
shallow‐to‐deep transitions in convective clouds over region north‐central Oklahoma. In addition to DA
experiment, corresponding simulations of FNL_BC and HRRR_BC are also conducted to provide similar
comparisons as on 30 August.

To have a consistent evaluation with the case of 30 August, we computed CF and LCF over domain 3 for
these 2 days similar to Figure 5. The results for 29 August (Figures 16a and 16b) show that the three simula-
tions underestimate the CF of both total CF and liquid cloud (LCF). While FNL_BC and 4DEnVar have a

Figure 16. Same as Figure 5 but for the cases of 29 (a and b) and 31 (c and d) August.

Figure 15. Comparison of observed and simulated surface temperature (°C) over Oklahoma at 20, 22, and 00 UTC. Columns from left to right represent
interpolated temperature from the Oklahoma Mesonet overlaid with wind vectors, simulation initialized by 4DEnVar analysis at 12 UTC, simulation initialized
by 4DEnVar_18UTC analysis at 18 UTC, and the difference between the two simulations (4DEnVar_18UTC and 4DEnVar).
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similar temporal variation in CF and LCFwith peak values around local noon (18 UTC) that is also similar to
observed, the CF from HRRR_BC gradually increases with time. For 31 August, all three simulations repro-
duce observed CF trend that increases with time (Figure 16c) and HRRR_BC is the closest to the observa-
tions. 4DEnVar simulates a somewhat wider extent of clouds than FNL_BC after 18 UTC in the afternoon
which is closer to the observations. Figure 16d shows that HRRR_BC overestimates liquid clouds before
noon, whereas both FNL_BC and 4DEnVar simulate similar cloud cover to the observations. In the after-
noon, three simulations tend to have a much slower rate of decay than observed.

Another metric for model assessment is the CBH as it's also a quasi‐observation of the daytime variation in
the CBL height. The network of DLs (locations are denoted in Figure 1) can detect ShCu CBH fairly accu-
rately, provides spatial variability, and has much higher temporal resolution than the available radiosondes.
Therefore, the DL‐estimated CBH is used as the reference for model assessment. Simulated and DL‐observed
CBH variations for each day are depicted in Figure 17. The simulated CBH is computed by taking the height
of lowest model level where area‐mean (see the area depicted by black square in Figures 8a and 8b) cloud
water mixing ratio exceeds 0.002 g kg−1. The observed CBH is obtained by least square fitting of all measured
data points from five DLs in each day.

The observed diurnal variation of ShCu CBHs (black lines in Figures 17a–17c) shows that there is clear day‐
to‐day variability, corresponding to day‐to‐day variability in boundary layer evolution. While the lines of
observed ShCu CBH on both 30 and 31 August (Figures 17b and 17c) exhibit a rising trend during the
day, a much shorter fitted curve of CBH is obtained for 29 August as the measured CBHs among five lidars
are unavailable for longer periods. To further assess these simulated results, a scatter plot is shown in
Figure 17d that includes all data points of each experiment when both simulated and observed values are
valid at a particular time. The root mean square error (RMSE) for each experiment is also listed in
Figure 17d. 4DEnVar has the lowest overall error in simulated CBH (0.22 km) among the three experiments
with 18 valid samples, suggesting that current DA configuration does have a positive impact on simulation of
ShCu populations. On the other hand, FNL_BC has an error of 0.36 km computed from 14 data points, and
HRRR_BC on average has an error of 0.38 km from 19 samples.

Figure 17. Comparison of domain 4 simulated area‐mean CBH (km) from experiments FNL_BC, HRRR_BC, and
4DEnVar and corresponding observation by network of Doppler lidars near ARM SGP site. The time‐height plots for
the cases of 29, 30, and 31 August are illustrated in (a), (b), and (c), respectively. Scatter plot that includes all valid data
points from 3‐day period is given in (d) with colors and marker styles for visual identification. The RMSE (km) and
number of sampling hours for each experiment are also denoted by colored texts in the plot.
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5.3. Assimilation of Hydrometeor Variables

As shown in section 4.1, the assimilation of hydrometeors in the HRRR model that provides the initial and
boundary conditions for the HRRR_BC experiment does constrain the presence of clouds in the model for
the first few simulation hours (Figure 4). This result has motivated ongoing research to assimilate gridded
retrieval of CWP from GOES‐13 measurements along with other observations to further improve the predic-
tion of clouds. Similar to the approach used by Jones et al. (2016) and Chen et al. (2015), the retrieved cloud
base and top heights will be supplemented to define the altitude and depth of cloud fields. However, recent
studies (Auligné et al., 2010; Wu et al., 2016) describe imbalances between ingested hydrometeors and other
prognostic variables that may induce abrupt model adjustments which subsequently negatively impact
cloud predictions. Hence, it is necessary to use an effective methodology that updates hydrometeors with
smaller imbalances among multiple variables.

5.4. PBL Parameterization Update in Latest HRRR

We previously showed the difficulty of the operational version 2 of HRRR in generating the observed ShCu
populations (Figure 6), despite the fact that our HRRR_BC simulation had some success in reproducing the
observed cloud fields. This may be due in part to the boundary layer and shallow convective parameteriza-
tions within that version of the HRRR. The PBL scheme of the operational HRRR system has been updated
to the EDMF version of the MYNN parameterization (MYNN‐EDMF; Angevine et al., 2018). In MYNN‐
EDMF, non‐local CBL vertical transport is modeled by an ensemble of subgrid plumes, which enables dry
convective turbulence and ShCu to be represented in a unified and physically realistic manner. It is antici-
pated that such a scheme in an operational system should lead to improved predictions of ShCu populations
in scenarios such as those observed on 30 August 2016.

5.5. Potential Application of Kilometer‐Scale DA in LES Modeling

Limited by computational resources, conventional LES simulation is usually conducted with a relatively
small domain (<100 km wide). Hence, it is common in LES modeling to apply a periodic assumption for
the lateral boundaries and prescribe large‐scale forcing as domain‐averaged profiles. However, as computa-
tional power becomes more affordable, it is also possible to use initial and boundary conditions from
kilometer‐scale models constrained by DA to drive the LES as demonstrated in Haupt et al. (2019) in which
they concluded that the major challenge in the microscale simulation for the need of wind industry is to cap-
ture the timing of dynamic events in mesoscale.

The framework of kilometer‐scale DA demonstrated in this study shows the potential of multiscale DA that
enables generation of fine‐scale (~1‐km resolution) analyses at arbitrary frequencies. Based on the evalua-
tion described in the previous sections, the kilometer‐scale simulation is well constrained by observations
and could be used to drive LES modeling, such as the simulation described in Fast et al. (2019). To do so,
an option is to nest LES domain(s) in the kilometer‐scale DA domain so that the DA domain could provide
more realistic boundary conditions for free‐running inner LES domain(s). Similar work can be also done by
taking advantage of the “ndown” function implemented in WRF model. This process acquires inputs from
the DA simulation at an arbitrary frequency as long as the domain extent of DA simulation is larger than
the LES domain. The initial conditions for WRF LES domain are obtained by interpolation of DA simulation
domain at a given time, whereas the boundary conditions are linearly interpolated in time. Hence, the more
frequent inputs from DA analyses it has, the more accurate boundary condition will be generated.

6. Summary

In this study, we use an observation‐constrained cloud‐system resolving model to simulate continental ShCu
cloud populations observed on 30 August 2016 during the HI‐SCALE field campaign. WRF model forecasts
are optimized by assimilating observations including NCEP operational data sets and boundary layer mea-
surements collected near ARM SGP site over north‐central Oklahoma with a GSI‐based 4DEnVar hybrid
technique. To understand the impact of DA on prediction of shallow convective clouds evolution, three addi-
tional experiments are conducted, including (1) FNL_BC, which initializes WRF model with FNL as initial
and boundary conditions but without DA; (2) HRRR_BC, which initializes WRF by HRRR analyses and
without any DA; and (3) 4DEnVar_GDAS, which is similar to 4DEnVar yet only NCEP GDAS data sets
are assimilated. The results show that our DA experiment (4DEnVar) reproduces more reasonable
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amount of both total and LCFs through daytime over a statewide domain (covering Oklahoma and southern
Kansas) than the other experiments against GOES‐13 5‐km gridded CWP and LWP retrievals, implying that
it better captures mesoscale weather systems. Snapshots of simulated cloud fields at 18 UTC from the 4‐ and
1.33‐km domains over north‐central Oklahoma reveal that model resolution modulates the number and size
of shallow convective cloud population even under very similar ambient conditions. Combining these data
with in situ measurements will provide an unprecedented amount data for model evaluation and improved
parameterizations.

The mesoscale simulations in this study are evaluated using ARM SGP measurements including DL, radio-
sonde, RL, and G‐1 aircraft. Overall, it shows that the life cycle of ShCu populations is more accurately repro-
duced by 4DEnVar experiment as it generates shallow convective clouds that are most comparable with time
series CBH estimated by DL network. From other evaluations that utilize radiosonde, RL, and G‐1 measure-
ments, the 4DEnVar experiment further illustrates how additional measurements made at the ARM SGP site
can be used to further constrain models when simulating the evolution of the CBL and shallow clouds. For
example, the bias of moisture variations within CBL near the ARM SGP site is smaller in the 4DEnVar
experiment than in 4DEnVar_GDAS, which leads to better prediction of the life cycle of shallow convective
clouds (Figures 9c and 9d). Of course, the impact of assimilating observational data sets collected near the
ARM SGP site is expected to be more significant within a confined region near the site. However, assimila-
tion of surface measurements of Oklahoma Mesonet that has a wider data coverage further extends model
constraint in space as it shows clear improvement in predicting precipitation over a larger domain
(Figures 6d and 6e), which is also mentioned in Schenkman et al. (2011). Our results suggest that additional
measurements of lower‐tropospheric moisture profiles at a higher spatiotemporal resolution than the radio-
sonde network could improve boundary layer and forecasts of shallow convections and subsequently deeper
precipitating convective cloud systems over the central United States (Coniglio et al., 2019; National
Research Council, 2009).

Some of the obstacles and opportunities of representing shallow convective clouds and their transition to
deeper, precipitating convection by cloud‐system resolving models are discussed. The likelihood of routine
microscale simulations in the near future suggests that additional research on the best approach in coupling
kilometer‐scale DA to LES modeling is needed. Uncertainties in microscale predictions could be reduced by
taking advantage of an increasing number of remote sensing and in situ observations and advanced assim-
ilation techniques in larger‐scale mesoscale models.

Data Availability Statement

The GOES data are downloaded from ARM website (https://www.arm.gov/capabilities/vaps/visst). The
WRF community model is available from the National Center for Atmospheric Research (NCAR; http://
www2.mmm.ucar.edu/wrf/users/). The HRRR analysis and forecast products were obtained from the
HRRR archive at University of Utah (http://hrrr.chpc.utah.edu/; doi: 10.7278/S5JQ0Z5B). HI‐SCALE data
used in this manuscript are freely available from the ARM data archive (https://www.arm.gov/data and
https://www.arm.gov/research/campaigns/aaf2016hiscale). TheWRFmodel outputs generated by the simu-
lations in this study are saved on PNNL's long‐term storage system, called Aurora (rc‐support@pnnl.gov).
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